THE ROLE OF EPA CLINICAL RESEARCH IN SETTING AIR QUALITY STANDARDS

William F. McDonnell MD, PhD Research Medical Officer Human Studies Division, USEPA

> U.S. EPA Science Forum June 2, 2004

Role of Clinical Research in Air Quality Standards?

- Ethical Considerations
- Scientific Value

What Are Controlled Human Exposure Studies?

- Volunteers
- Controlled Pollutant Conditions
- Randomization to Treatment
- Measurement of Health Effect
- Compare Pollutant Effects with Air Control

"Effective" and "Optimal" Standards

- High Probability of Meeting Requirements of the Law
- Not Unnecessarily Restrictive

Health Information Needed to Identify an Optimal Standard

- Does Pollutant Cause Effect?
- Accurate Estimates of Human Health Effects in Population
 - Existing Conditions
 - Set of Alternate Regulatory Scenarios
- Uncertainty of Above Estimates

Why Does Uncertainty Matter?

More Uncertainty in Health Data Decreases the Probability of Identifying an Optimal Standard

Sources of Uncertainty in Health Data

- Interspecies Extrapolation
- Individual Variability
- Bias in Epidemiology Studies
- What is Adverse?
- Limited Amount of Data

How Can Clinical Research Improve Accuracy and Add Precision to Estimates of the Health Effects of Air Pollutants in Humans?

Strengths of Clinical Studies

- Randomization
 - Establish Causality
 - Unbiased estimates of effect
- Species of Interest
- Control and Accurately Measure Exposure

Limitations of Clinical Studies (Ethical)

- Pollutants with Limited, Acute, Reversible Effects
- Susceptible Populations
- Limited Health Endpoints

Limitations of Clinical Studies (Logistic)

- Small Sample Sizes
 - Rare Outcomes Difficult to Study
 - Interactions Difficult to Study
- Short Duration
- Volunteers May Not Be Representative of Population
- Can't Totally Reproduce Ambient Environment

Contributions to Accuracy and Precision by Clinical Studies

- Ozone and Eye Irritation
- Ozone and Asthma Attacks
- Chlorine and Nasal Lesions
- NAAQS for Ozone

NAAQS for Ozone

- 1971- 1 hr 0.08 ppm oxidants
- 1979 1 hr 0.12 ppm ozone
- 1997 8 hr 0.08 ppm ozone

2-hr Ozone Exposures

- Healthy, Young Adults
- 0.0, 0.12, 0.18, 0.30, 0.40
 ppm Ozone
- Alternate Rest/Heavy Ex.
- FEV₁ /Symptoms

6.7-hr Ozone Exposures

- Healthy, Young Adults
- 0.0, 0.08, 0.10, 0.12 ppm
 Ozone
- Alternate Moderate Ex./Rest
- FEV₁ /Symptoms

Health Information Needed to Identify an Optimal Standard

- Does Pollutant Cause Effect?
- Accurate Estimates of Human Health Effects in Population
 - Existing Conditions
 - Set of Alternate Regulatory
 Scenarios
- Uncertainty of Above Estimates

EPA Clinical Studies Support for 1-hr and 8 hr NAAQS for Ozone

- Demonstrated Causality
- Accurate Estimates of Effect
 - Mean
 - Individual Variability
 - Sensitive Subpopulations
 - Exposure-Response Models
- Estimates of Precision

CONCLUSIONS

- In the right circumstances, clinical studies (CS) directly establish causality and provide accurate and precise estimates of effect.
- In less optimal circumstances, CS complement animal and epidemiology data decreasing uncertainty.

CONCLUSIONS

- Clinical studies usually increase the probability that an optimal standard will be identified.
- Clinical studies clearly have a role to play in standard setting.

